• Как измерить напряжение и расход электроэнергии в доме при помощи смартфона. Как измерить мощность потребления электроэнергии

    Довольно часто возникает необходимость измерять мощность, потребляемую из сети, или же генерируемую в сеть. Это необходимо для учета потребляемой или генерируемой энергии, а также для обеспечения нормальной работы энергосистемы (избежание перегрузок). Измерять мощность можно несколькими способами – прямым и косвенным. При прямом измерении применяют ваттметр, а при косвенном амперметр и вольтметр.

    Измерение мощности в цепи постоянного тока

    Из-за отсутствия реактивной и активной составляющей в цепях постоянного тока для измерения мощности ваттметр применяют очень редко. Как правило, величину потребляемой или отдаваемой энергии измеряют косвенным методом, с помощью измеряют ток I в цепи, а с помощью измеряют напряжение U нагрузки. После чего применив простую формулу P=UI и получают значение мощности.

    Чтоб уменьшить из-за влияний внутренних сопротивлений устройств, приборы могут подключать по различным схемам, а именно при относительно малом сопротивлении нагрузки R применяют такую схему включения:

    А при большом значении R такую схему:

    Измерение мощности в однофазных цепях переменного тока

    Главным отличием цепей переменного тока от сетей постоянного тока, пожалуй, заключается в том, что в переменном напряжении существует несколько мощностей – . Полную измеряют зачастую тем же косвенным методом с помощью амперметра и вольтметра и значение ее равно S=UI.

    Замер же активной P=UIcosφ и реактивной Q=UIsinφ производится прямым методом, с помощью ваттметра. Для измерения ваттметр в цепь подключают по следующей схеме:

    Где токовую обмотку необходимо подключить последовательно с нагрузкой R н, и, соответственно, обмотку напряжения параллельно нагрузке.

    Замер реактивной мощности в однофазных сетях не производится. Такие опыты зачастую ставятся только в лабораториях, где ваттметры включают по специальным схемам.

    Измерение мощности в трехфазных цепях переменного тока

    Как и в однофазных сетях, так же и в трехфазных полную энергию сети можно измерять косвенным методом, то есть с помощью вольтметра и амперметра по схемам показанным выше. Если нагрузка трехфазной цепи будет симметричной, то можно применить такую формулу:

    U л – напряжение линейное, I- фазный ток.

    Если же фазная нагрузка не симметрична, то производят суммирование мощностей каждой из фаз:

    При измерении активной энергии в четырехпроводной цепи при использовании трех ваттметров, как показано ниже:

    Общей энергией потребляемой из сети будет сумма показаний ваттметров:

    Не меньшее распространение получил и метод измерения двумя ваттметрами (применим только для трехпроводных цепей):

    Сумму их показаний можно выразить следующим выражением:

    При симметричной нагрузке применима такая же формула как и для полной энергии:

    Где φ – сдвиг между током и напряжением (угол фазового сдвига).

    Измерение реактивной составляющей производят по той же схеме (смотри рисунок в)) и в этом случае она будет равна разности алгебраической между показателями приборов:

    Если сеть не симметрична, то для измерения реактивной составляющей применяют два или три ваттметра, которые подключают по различным схемам.

    Процесс измерения активной и реактивной мощности

    Производят измерения активной мощности цепи переменного напряжения. Они подключаются по тем же схемам что и ваттметры. Учет реактивной энергии в однофазных потребителей в нашей стране не ведется. Ее учет производят в трехфазных цепях крупных промышленных предприятий, потребляющих большие объемы электроэнергии. Счетчики активной энергии имеют маркировку СА, реактивной СР. Также широкое применение получают электронные счетчики электроэнергии.

    Энергия вещества - это его способность выполнять работу. Существует много видов энергии. Химикам наиболее "интересна" кинетическая и потенциальная энергия.

    1. Кинетическая энергия

    Кинетическая энергия - энергия движения.

    Любое движущееся тело обладает кинетической энергией. Чем больше масса тела и его скорость - тем большей кинетической энергией оно обладает. При соприкосновении с другим телом часть кинетической энергии передается этому телу. Например, ударив бильярдным кием по шару, мы передаем ему (шару) какую-то часть кинетической энергии - шар начинает двигаться. При соударении его с другим шаром, часть энергии опять передается (перераспределяется) и в движении будут уже два шара. Кинетическая энергия может превращаться в энергию другого вида. Так на гидроэлектростанции кинетическая энергия падающей воды преобразуется в электрическую энергию, вырабатываемую турбиной генератора.

    Помните закон сохранения энергии? - "Энергия никуда не исчезает бесследно и не появляется из ниоткуда - она лишь переходит из одного вида в другой" (тут следует сделать оговорку, что это не относится к ядерным реакциям).

    2. Потенциальная энергия

    Потенциальная энергия - это "скрытая" энергия , которая зависит от положения тел и способна проявиться при определенных условиях.

    Так, сосулька, свисающая с крыши дома, не обладает кинетической энергией (поскольку она не движется), но зато у нее есть "неплохая" потенциальная энергия (которая тем больше, чем массивнее сосулька и выше крыша дома). При определенных условиях (когда солнышко хорошо пригреет) сосулька может оторваться и упасть на землю. В этом случае, заложенная в ней потенциальная энергия перейдет в кинетическую.

    Однако, химикам такие аспекты потенциальной энергии не интересны. Их интересует потенциальная энергия, заложенная в химических связях:
    - как энергия, съеденной нами пищи, хранится в организме?
    - почему автомобиль без бензина не едет?...

    3. Как измерить энергию

    Физикам измерить потенциальную и кинетическую энергии тела не составляет трудности. Для этого надо знать массу тела, его скорость (кинетическая энергия) или расстояние до земли (потенциальная энергия).

    Для химиков задача усложняется.

    Потенциальная энергия, хранящаяся в химических связях, зависит от вида и количества связей, которые могут быть разорваны.

    Для измерения кинетической энергии вещества достаточно измерить его температуру. При этом измеряется средняя кинетическая энергия частиц, которые движутся в веществе.

    Мера общего количества энергии какого-либо вещества - это его теплота. Например, температура воды в вашем стакане и в Черном море может быть одинакова. Но, чтобы повысить ее, скажем на 1°С, надо совершенно разное количество энергии для стакана и для моря. Т.о., можно сказать, что теплота учитывает такой компонент вещества, как объем.

    Единица измерения теплоты в системе СИ является Джоуль. Однако, "в ходу" и другая метрическая система - калория (кал):

    1 кал = 4,184 Дж

    Калория довольно маленькая единица измерения:

    Поэтому, чаще используют килокалорию (ккал): 1 ккал = 1000 кал.

    Энергетика человека представляет собой запас жизненных сил и энергии, которым обладает конкретная личность. Мы можем повышать свою энергетику при помощи различных способов (о них детально рассказывается в другой статье). Но есть определённые ограничения — каждый человек от природы имеет свой энергетический потенциал, который не может существенно измениться. В этой статье мы расскажем, как определяется энергетика по дате рождения.

    Когда человек в достаточной степени наполнен жизненной энергией, он чувствует уверенность в своих силах. Это человек-лидер, который не тревожится о мнении окружающих о себе. Он генерирует различные идеи и активно внедряет их в жизнь. Такие личности отличаются естественным поведением, прямым выражением своих чувств и эмоций.

    От природы большой энергетический потенциал получают неординарные, творческие люди, выступающие источниками свежих идей, способные делиться с окружающими своей энергией. Это замечательные рассказчики, у них всегда вдоволь поклонников, они легко устанавливают связи с новыми людьми за счёт своей вежливости, обаяния и доброжелательности.

    Сильное энергетическое поле проявляется и по определённым внешним признакам:

    • характерны тонкие губы;
    • массивный подбородок;
    • густые брови;
    • широкая челюсть;
    • в большинстве случаев такие люди тёмноволосые;
    • люди с тёмным цветом глаз имеют очень сильную ауру.

    Как дата рождения влияет на энергетику

    День, месяц, год и даже время рождения оказывает огромное влияние на всю последующую жизнь человека. Понятие, о котором мы сейчас говорим, также известно под названием «биоэнергетика». На сегодняшний день появилась даже такая профессия – биоэнергетик. Эксперты этой сферы способны проследить связь между конкретной личностью, цифрами, Вселенной и так далее.

    Биоэнергетики (на основании нумерологии) установили, что дата рождения способна пролить свет на энергетический потенциал человека. Прибегнув к несложным математическим расчётам, реально составить прогноз будущих событий на конкретный период жизни. Также эти данные используются для построения кривой жизни и контроля изменений в . Чем больше энергии у человека, тем соответственно выше будет кривая.

    Биоэнергетика по дате рождения: вычисление

    Как происходит расчёт энергетики

    1. Вспомните дату своего появления на свет. К примеру, 25 мая 1994 года.
    2. Запишите первое число – в его качестве выступает год рождения – 1994.
    3. Второе же число образуется порядковым числом месяца рождения и днём – 0525.

    Обратите внимание! Если день рождения образован однозначным числом (к примеру, девяткой), то запишите второе число таким образом – 809.

    1. Теперь умножьте первое число на второе = 1994*0525=1,046,850.
    2. После этого высчитываем сумму всех цифр получившегося числа:

    Число, которое получилось представляет собой биоэнергетический потенциал человека (Е) и демонстрирует каким количеством жизненных сил (энергии) он обладает.

    А теперь самое интересное – узнайте, кем вы являетесь:

    • энергетическим вампиром – Е меньше двадцати;
    • нормальным человеком – значения Е будут колебаться в пределах от двадцати до тридцати;
    • энергетическим донором – имеет потенциал энергии от тридцати и больше.

    Независимо от природного энергетического баланса, у всех у нас в жизни бывают периоды, когда мы находимся в ослабленном состоянии и нуждаемся в дополнительной энергетической подпитке. В таком случае человек неосознанно начинает «вампирить» окружающих.

    При этом нормальные люди и доноры начинают чувствовать себя дискомфортно. Но доноры, Е которых превышает отметку «тридцать три» способны подзаряжаться космической энергией или питаются энергией от природы. Они щедро дарят жизненную силу окружающим, люди стремятся находиться рядом с ними, чтобы подпитываться энергией.

    Куда теряется энергия

    Возможно, вам знакомо состояние, когда силы начинают покидать, как будто кто-то «сдувает» вас подобно воздушному шарику. Вы полноценно питаетесь, спите достаточное количество часов, занимаетесь физической активностью, но внутренне всё равно чувствуете себя уставшим. Описанные выше симптомы описывают состояние оттока жизненной энергии: вы, вроде всё делаете для её восполнения, но её становится всё меньше.

    Почему так происходит? Вам нужно проанализировать своё поведение и стиль жизни, ведь причина в чём-то есть, а вот в чём – это мы сейчас попробуем установить.

    Итак, вызвать сильную потерю энергии может:

    1. Переживание чувства вины. Таким образом с вами разговаривает ваша совесть, представляющая самого строгого нашего судью в течение всей жизни. Совесть доставляет серьёзный психологический дискомфорт, из-за которого и растрачивается энергия.

    Если же вы попробуете заглушить голос совести – столкнётесь с прямо противоположным результатом и ещё большим ухудшением ситуации. Внешне это также проявится в виде ухудшения материального положения. Самое разумное решение в таком случае – найти внутренний компромисс самим собой.

    1. Обиды также приводят к энергодефициту. Самый популярный вариант – это обиды на родителей, которые, вероятно, тянутся с детского возраста. Если человек и во взрослом возрасте никак не может отпустить прошлое и простить своих родителей – это будет сильно влиять на различные стороны его жизни.

    То, какие взаимоотношения были в вашей родительской семье, окажет своё воздействие на модель собственной семьи. А затаённые многолетние обиды самым негативным образом влияют на людей, они способствуют истощению, как эмоциональному, так и энергетическому.

    1. Психологический дискомфорт, который провоцирует энергетические потери, может быть вызван и другими отрицательными эмоциями: страхом, боязнью неопределённости, тревогой, разочарованиями и душевной болью.
    2. Зависть – вызывает много споров у экспертов относительно своего влияния на организм человека. Одна часть специалистов выделяет зависть, как мотивирующую эмоцию, которая способна ускорить достижение успеха, поставить перед человеком конкретные цели в жизни.

    Мы перечислили основные внутренние причины энергетических потерь. А есть ещё и внешние, к числу которых относится общение с энергетическими «кровососами», которыми являются зануды, нытики, бездельники, неудачники, жертвы и больные, маньяки, а также идейные борцы. Контактируя с ними, вы становитесь энергетически слабее.

    Поэтому стоит окружать себя позитивно мыслящими людьми, стараться всегда быть в хорошем настроении, вовремя завершать начатое, не тревожиться о своём будущем (вернее, тревожиться, но в разумных пределах), очищаться от своих внутренних негативных эмоций (обиды, злости, агрессии и так далее) и тогда ваше энергетическое поле будет усиливаться с каждым днём.

    Погадайте на сегодняшний день c помощью расклада Таро "Карта дня"!

    Для правильного гадания: сосредоточьтесь на подсознании и ни о чем не думайте хотябы 1-2 минуты.

    Как будете готовы - тяните карту:

    В настоящее время необходимо измерять мощность и энергию постоянного тока, активную мощность и энергию переменного однофазного и трехфазного тока, реактивную мощность и энергию трехфазного переменного тока, мгновенное значение мощности, а также количество электричества в очень широких пределах.

    Электрическая мощность определяется работой, совершаемой источником электромагнитного поля в единицу времени.

    Активная (поглощаемая электрической цепью) мощность

    P a =UIcos > = I 2 R=U 2 /R, (1)

    где U , I - действующие значения напряжения и тока;  - угол сдвига фаз.

    Реактивная мощность

    Р р = UIsin = I 2 X . (2)

    Полная мощность

    P n = UI = PZ . Эти три типа мощности связаны выражением

    P =(Р а 2 2 р ) (3)

    Так, мощность измеряется в пределах 1 Вт... 10 ГВт (в цепях постоянного и однофазного переменного тока) с погрешностью ±(0,01...0,1) %, а при СВЧ - с погрешностью ±(1...5) %. Реактивная мощность от единиц вар до Мвар измеряется с погрешностью ±(0,1...0,5)%.

    Диапазон измерения электрической энергии определяется диапазонами измерения номинальных токов (1 нА...1О кА) и на­пряжений (1 мкВ...1 MB), погрешность измерения составляет ±(0,1...2,5)%.

    Измерение реактивной энергии представляет интерес только для промышленных трехфазных цепей.

    Измерение мощности в цепях постоянного тока. При косвенном измерении мощности используют метод амперметра и вольтметра и компенсационный метод.

    Метод амперметра и вольтметра. В этом случае приборы включаются по двум схемам (рис.1).

    Метод прост, надежен, экономичен, но обладает рядом существенных недостатков: необходимостью снимать показания по двум

    Рис. .1. Схемы измерения мощности по показаниям вольтметра и амперметра при малых (а) и больших (б) сопротивлениях нагрузки

    приборам; необходимостью производить вычисления; невысокой точностью за счет суммирования погрешности приборов.

    Мощность Р х , вычисленная по показаниям приборов (рис. 1а), имеет вид

    Она больше действительного значения мощности, расходуемой в нагрузке Р н, на значение мощности потребления вольтметра Р v , т. е. Р н = Р х – Р v .

    Погрешность определения мощности в нагрузке тем меньше, чем больше входное сопротивление вольтметра и меньше сопротивление нагрузки.

    Мощность Р х , вычисленная по показаниям приборов (рис 1., б), имеем вид

    Она больше действительного значения мощности потребления нагрузки на значение мощности потребления амперметром Р А . Методическая погрешность тем меньше, чем меньше входное сопротивление амперметра и больше сопротивление нагрузки.

    Компенсационный метод. Этот метод применяется тогда, когда требуется высокая точность измерения мощности. С помощью компенсатора поочередно измеряется ток нагрузки и падение напряжения на нагрузке. Измеряемая мощность определяется по формуле

    P = U н I н . (4)

    При прямом измерении активная мощность измеряется электромеханическими (электродинамической и ферродинамической систем), цифровыми и электронными ваттметрами.

    Электродинамические ваттметры применяются как переносные приборы для точных измерений мощности (класс 0,1... 2,5) в цепях постоянного и переменного тока с частотой до нескольких тысяч герц.

    Ферродинамические щитовые вольтметры применяются в цепях переменного тока промышленной частоты (класс 1,5…2,5).

    В широком диапазоне частот применяются цифровые ваттметры, основу

    составляют различные преобразователи мощности (например, термоэлектрические), УПТ, микропроцессор и ЦОУ. В цифровых ваттметрах осуществляется автоматический выбор пределов измерений, самокалибровка и предусмотрен внешний интерфейс.

    Для измерения мощности в высокочастотных цепях также используются специальные и электронные ваттметры.

    Для измерения реактивной мощности на низких частотах служат реактивные ваттметры (варметры), в которых путем использования специальных схем отклонение подвижной части электродинамического ИМ пропорционально реактивной мощности.

    Включение электромеханических ваттметров непосредственно в электрическую цепь допустимо при токах нагрузки, не превышающих 10... 20 А, и напряжениях до 600 В. Измерение мощности при больших токах нагрузки и в цепях высокого напряжения производится ваттметром с измерительными трансформаторами тока ТА и напряжения TV (рис..2).

    Измерение активной мощности в цепях трехфазного тока. Метод одного ваттметра. Этот метод применяется только в симметричной системе с равномерной нагрузкой фаз, одинаковыми углами сдвига по фазе между векторами I и U и с полной симметрией напряжений (рис..3).

    Рис..3. Схемы включения ваттметра в трехфазную трехпроводную цепь при полной симметрии присоединения нагрузки:

    а - звездой; б - треугольником; в ~- с искусственной нулевой точкой

    Рис.4. Схемы включения двух ваттметров в трехфазную цепь: а - в 1-ю и 3-ю; б - в 1-ю и 2-ю; в - в 2-ю и 3-ю

    На рис. .3, а нагрузка соединена звездой и нулевая точка доступна. На рис.3, б нагрузка соединена треугольником, ваттметр включен в фазу. На рис. .3, в нагрузка соединена треугольником с искусственной нулевой точкой. Искусственная нулевая точка создается с помощью двух резисторов, каждый из которых равен сопротивлению цепи обмотки напряжения ваттметра (обычно указывается в техническом паспорте на ваттметр).

    Показания ваттметра будут соответствовать мощности одной фазы, а мощность всей трехфазной сети во всех трех случаях включения прибора будет равна мощности одной фазы, умноженной на три:

    Р = 3 P w

    Метод двух ваттметров. Этот метод применяется в трехфазной трехпроводной цепи независимо от схемы соединения и характера нагрузки как при симметрии, так и при асимметрии токов и напряжений. Асимметрия - это система, в которой мощности отдельных фаз различны. Токовые обмотки ваттметров включаются в любые две фазы, а обмотки напряжения включаются на линейные напряжения (рис. 4).

    Полная мощность может быть выражена в виде суммы показаний Двух ваттметров. Так, для схемы, представленной на рис..4, а,

    где  1 - угол сдвига фаз между током I 1 и линейным напряжением U 12,  2 - угол сдвига фаз между током I 3 и линейным напряжением U 32 . В частном случае при симметричной системе напряжений и одинаковой нагрузке фаз  1 , = 30° -  и  2 = 30° -  показания ваттметров будут:

    При активной нагрузке (= 0) показания ваттметров будут одинаковы, так как P W ] = P W 2 IUcos 30°.

    При нагрузке с углом сдвига ср = 60° показания второго ваттметра равны нулю, так как P W 2 = IU cos(30° + ) = IU cos(30° + 60°) = 0, и в этом случае мощность трехфазной цепи измеряется одним ваттметром.

    При нагрузке с углом сдвига  > 60° мощность, измеряемая вторым ваттметром, будет отрицательной, так как (30° +) больше 90°. В этом случае подвижная часть ваттметров повернется в обратную сторону. Для отсчета необходимо изменить на 180° фазу тока в одной из цепей ваттметра. В этом случае мощность цепи трехфазного тока равна разности показаний ваттметров

    Метод трех ваттметров. Для измерения мощности трехфазной цепи при несимметричной нагрузке включаются три ваттметра, и общая мощность при наличии нулевого провода будет равна арифметической сумме показаний трех ваттметров. В этом случае каждый ваттметр измеряет мощность одной фазы, показания ваттметра независимо от характера нагрузки будут положительные (параллельная обмотка включается на фазное напряжение, т. е. между линейным проводом и нулевым). Если нулевая точка недоступна и нулевой провод отсутствует, то параллельные цепи приборов могут образовать искусственную нулевую точку при условии, что сопротивления этих цепей равны между собой.

    Измерение реактивной мощности в однофазных и трехфазных цепях. Несмотря на то что реактивная мощность не определяет ни совершаемой работы, ни передаваемой энергии за единицу времени, ее измерение также важно. Наличие реактивной мощности приводит к дополнительным потерям электрической энергии в линиях передачи, трансформаторах и генераторах. Реактивная мощность измеряется в вольт-амперах реактивных (вар) как в однофазных, так и в трехфазных трех- и четырехпроводных цепях переменного тока электродинамическими и ферродинамическими или специально предназначенными для измерения реактивной мощности ваттметрами. Отличие реактивного ваттметра от обычного состоит в том, что он имеет усложненную схему параллельной цепи для получения сдвига по фазе, равного 90°

    между векторами тока и напряжения этой цепи. Тогда отклоне­ние подвижной части будет пропорционально реактивной мощности Р р = UIsin . Реактивные ваттметры преимущественно применяются для лабораторных измерений и поверки реактивных счетчиков.

    Реактивную мощность в трехфазной симметричной цепи можно измерить и активным ваттметром: для этого –токовая катушка последовательно включается в фазу А, катушка напряжения между фазами В и С.

    Измерение мощности в цепях повышенной частоты. С этой це­лью можно использовать как прямые, так и косвенные измерения и в ряде случаев предпочтительнее могут оказаться косвенные, так как иногда легче измерить ток и напряжение на нагрузке, чем непосредственно мощность. Прямое измерение мощности в цепях повышенных и высоких частот производится термоэлектрическими, электронными ваттметрами, ваттметрами, основанными на эффекте Холла, и цифровыми ваттметрами.

    Косвенные измерения осуществляются осциллографическим методом. Он применяется в основном тогда, когда цепь питается напряжением несинусоидальной формы, при высоких частотах, маломощных источниках напряжения и т. д.

    Измерение энергии в однофазных и трехфазных цепях. Энергия измеряется электромеханическими и электронными счетчиками электрической энергии. Электронные счетчики электрической энергии обладают лучшими метрологическими характеристиками, большей надежностью и являются перспективными средствами измерений электрической энергии.

    4. Измерение фазы и частоты

    Фаза характеризует состояние гармонического сигнала в опре­деленный момент времени t . Фазовый угол в начальный момент времени (начало отсчета времени), т.е. при t = 0, называют нуле вым (начальным) фазовым сдвигом. Разность фаз  измеряют обычно между током и напряжением либо между двумя напряжениями. В первом случае чаще интересуются не самим углом сдвига фаз, а величиной cos или коэффициентом мощности. Cos- это ко­синус того угла, на который опережает или отстает ток нагрузки от напряжения, приложенного к этой нагрузке. Фазовым сдвигом  двух гармонических сигналов одинаковой частоты называют модуль разности их начальных фаз  =| 1 -  2 |. Фазовый сдвиг  не зависит от времени, если остаются неизменными начальные фазы  1 , и  2 . Разность фаз выражается в радианах или градусах.

    Методы измерения угла сдвига фаз. Эти методы зависят от диапазона частот, уровня и формы сигнала, от требуемой точности и Наличия средств измерений. Различают косвенное и прямое изменения угла сдвига фаз.

    Косвенное измерение. Такое измерение угла сдвига фаз Между напряжением U и током I в нагрузке в однофазных цепях

    осуществляют с помощью трех приборов - вольтметра, амперметра и ваттметра (рис.5). Угол  определяется расчетным путем из найденного значения cos:

    Метод используется обычно на промышленной частоте и обеспечивает невысокую точность из-за методической погрешности, вызванной собственным потреблением приборов, достаточно прост, надежен, экономичен.

    В трехфазной симметричной цепи величина cos может быть определена следующими измерениями:

      мощность, ток и напряжение одной фазы;

      измерение активной мощности методом двух ваттметров;

      измерение реактивной мощности методом двух ваттметров с искусственной нейтральной точкой.

    Среди осциллографических методов измерения фазы наибольшее распространение получили методы линейной развертки и эллипса. Осциллографический метод, позволяющий наблюдать и фиксировать исследуемый сигнал в любой момент времени, используется в широком диапазоне частот в маломощных цепях при грубых измерениях (5... 10 %). Метод линейной развертки предполагает применение двухлучевого осциллографа, на горизонтальные пластины которого подают линейное развертывающее напряжение, а на вертикальные пластины - напряжение, между которыми измеряется фазовый сдвиг. Для синусоидальных кривых на экране получаем изображение двух напряжений (рис.6, а) и по измеренным отрезкам АБ и АС вычисляется угол сдвига между ними

    где АБ - отрезок между соответствующими точками кривых при переходе их через нуль по оси X ; АС - отрезок, соответствующий периоду.

    Погрешность измерения х зависит от погрешности отсчета и фазовой погрешности осциллографа.



    Если вместо линейной развертки использовать синусоидальное развертывающее напряжение, то получаемые на экране фигуры Лиссажу при равных частотах дают на экране осциллографа форму эллипса (Рис. 6б). Угол сдвига  x =arcsin(АБ/ВГ).

    Этот метод позволяет измерять  х в пределах 0 90 о без определения знака фазового угла.

    Погрешность измерения  х также определяется погрешностью отсчета

    Рис..6. Кривые, получаемые на экране двухлучевого осциллографа: при линейной (а) и синусоидальной (б) развертке

    и расхождениями в фазовых сдвигах каналов Х и Y осциллографа.

    Применение компенсатора переменного тока с калиброванным фазовращателем и электронным осциллографом в качестве индикатора равенства фаз позволяет произвести достаточно точное измерение угла сдвига фаз. Погрешность измерения в этом случае определяется в основном погрешностью используемого фазовращателя.

    Прямое измерение. Прямое измерение утла сдвига фаз осуществляют с помощью электродинамических, ферродинамических, электромагнитных, электронных и цифровых фазометров. Наиболее часто из электромеханических фазометров используют электродинамические и электромагнитные логометрические фазометры. Шкала у этих приборов линейная. Используются на диапазоне частот от 50 Гц до 6... 8 кГц. Классы точности - 0,2; 0,5. Для них характерна большая потребляемая мощность 1(5...10 Вт).

    В трехфазной симметричной цепи измерение угла сдвига фаз  или cos осуществляется однофазным или трехфазным фазометрами.

    Цифровые фазометры используются в маломощных цепях в диапазоне частот от единиц Гц до 150 МГц, классы точности - 0,005; 0,01; 0,02; 0,05; 0,1; 0,5; 1,0. В электронно-счетных цифровых фазометрах сдвиг по фазе между двумя напряжениями преобразуется во временной интервал, заполняемый импульсами стабильной частоты с определенным периодом, которые под-считываются электронным счетчиком импульсов. Составляющие погрешности этих приборов: погрешность дискретности, погрешность генератора стабильной частоты, погрешность, зависящая от точности формирования и передачи временного интервала.

    Методы измерения частоты. Частота является одной из важнейших характеристик периодического процесса. Определяется числом полных циклов (периодов) изменения сигнала в единицу времени. Диапазон используемых в технике частот очень велик и колеблется от долей герц до десятков. Весь спектр частот подразделяется на два диапазона - низкие и высокие.

    Низкие частоты: инфразвуковые - ниже 20 Гц; звуковые - 20...20000 Гц; ультразвуковые - 20...200 кГц.

    Высокие частоты: высокие - от 200 кГц до 30 МГц; ультравысокие - 30...300 МГц.

    Поэтому выбор метода измерения частоты зависит от диапазона измеряемых частот, необходимой точности измерения, величины и формы напряжения измеряемой частоты, мощности измеряемого сигнала, наличия средств измерений и т.д.

    Прямое измерение. Метод основан на применении электромеханических, электронных и цифровых частотомеров.

    Электромеханические частотомеры используют измерительный механизм электромагнитной, электродинамической и ферродинамической систем с непосредственным отсчетом частоты по шкале логометрического измерителя. Они просты в устройстве и эксплуатации, надежны, обладают довольно высокой точностью. Их используют в диапазоне частот от 20 до 2500 Гц. Классы точно­сти - 0,2; 0,5; 1,0; 1,5; 2,5.

    Электронные частотомеры применяются при измерениях в частотном диапазоне от 10 Гц до нескольких мегагерц, при уровнях входного сигнала 0,5... 200 В. Они имеют большое входное сопротивление, что обеспечивает малое потребление мощности. Классы точности - 0,5; 1,0 и ниже.

    Цифровые частотомеры применяются для очень точных изме­рений в диапазоне 0,01 Гц... 17 ГГц. Источниками погрешности являются погрешность от дискретности и нестабильности кварцевого генератора.

    Мостовой метод. Этот метод измерения частоты основан на использовании частотозависимых мостов переменного тока, питаемых напряжением измеряемой частоты. Наиболее распространенной мостовой схемой для измерения частоты является емкостной мост. Мостовой метод измерения частоты применяют для измерения низких частот в пределах 20 Гц... 20 кГц, погрешность измерения составляет 0,5... 1 %.

    Косвенное измерение. Метод осуществляется с использованием осциллографов: по интерференционным фигурам (фигурам Лиссажу) и круговой развертки. Методы просты, удобны и достаточно точны. Их применяют в широком диапазоне частот 10 Гц... 20 МГц. Недостатком метода Лиссажу является сложность расшифровки фигур при соотношении фигур более 10 и, следовательно, возрастает погрешность измерения за счет установления истинного отношения частот. При методе круговой развертки погрешность измерения в основном определяется погрешностью квантования основной частоты.

    МЕТОДЫ И СРЕДСТВА ИЗМЕРЕНИЙ ПАРАМЕТРОВ ИЗМЕРИТЕЛЬНЫХ ЦЕПЕЙ

    Один из принципов Методики Формирования Событий рекомендует нам быть сильным на пути к желанным целям. Причем быть сильным не физически (что тоже неплохо, но не обязательно), а сильным внутренне, энергетически.

    Под понятием «сила» или «внутренняя энергия» в данном случае мы понимаем некоторую очень тонкую субстанцию, которую мы получаем из пищи, воздуха, от других людей, из природы, от эгрегоров разного уровня, из Космоса и любых других источников, о которых вы знаете или что-то слышали. В различных системах верований она называется терминами «биоэнергия», «прана», энергия «ци» и т.д. Мы не будем использовать ни один из этих терминов, а постараемся обойтись словом «энергия».

    Мало кто занимается хоть какими-то упражнениями или системами оздоровления. Поэтому энергетические возможности современного человека, не занимающегося специальными техниками типа йоги или цигуна, чаще всего очень ограничены.

    Между тем уровень нашей энергетики определяет исполнителей “заказов” и скорость их выполнения.

    Консультация Экстрасенса-целителя. Помощь получают все, кто о ней попросит!

    OKhelps — платформа №1 бесплатных онлайн семинаров.

    Обучайся легко, проведи время с пользой https://okhelps.com/

    Получайте ответы на интересующие Вас вопросы от экспертов!